

1 ¹

ANC 2023 Al and Machine Learning for Microwaves

Past, Present and Future Trends

Qi-jun Zhang

Chancellor's Professor Carleton University Ottawa, Canada

www.doe.carleton.ca/~qjz

Microwave Modeling/Simulation

From Biological Learning to Machine Learning

- Biological Neural Network

Artificial Neural Network (ANN) First Call Neural Network

(ANN)
 $\begin{array}{ccc}\n & & \frac{y_1-y_2}{y_1} & \frac{y_m}{y_m} \\
 & & \frac{y_1-y_2}{y_m} & \frac{y_m}{y_m}\n\end{array}$

Neural Network Training

Objective:

to adjust w such that

minimize
$$
\sum_{w} (y - d)^2
$$

Early Works of ANN for Microwave Design Early Works

of ANN for Microwave Design

• ANN for microwave impedance matching (Vai, Prasad, IEEE MGL 1993)

• ANN for microstrip circuit design (Horng, Wang, Alexopoulos, IMS 1993)

• ANN for microwave analysis and opti • ANN for Microwave Design
• ANN for Microwave Design
• ANN for microwave impedance matching (Vai, Prasad, IEEE MGL 1993)
• ANN for microstrip circuit design (Horng, Wang, Alexopoulos, IMS 1993)
• ANN for microwave analysi • ANN for microwave impedance matching (Vai, Prasad, IEEE MGL 1993)
• ANN for microwave impedance matching (Vai, Prasad, IEEE MGL 1993)
• ANN for microstrip circuit design (Horng, Wang, Alexopoulos, IMS 1993)
• ANN for mic • ANN for microwave impedance matching (Vai, Prasad, IEEE MGL 1993)
• ANN for microstrip circuit design (Horng, Wang, Alexopoulos, IMS 1993)
• ANN for microstrip circuit design (Horng, Wang, Alexopoulos, IMS 1993)
• ANN fo • ANN for microwave impedance matching (Vai, Prasad, IEEE MGL 1993)
• ANN for microstrip circuit design (Horng, Wang, Alexopoulos, IMS 1993)
• ANN for microwave analysis and optimization (Zaabab, Zhang, Nakhla, IMS 1994)
• • ANN for microwave impedance matching (Vai, Prasad, IEEE MGL 1993)
• ANN for microstrip circuit design (Horng, Wang, Alexopoulos, IMS 1993)
• ANN for microstrip circuit design (Horng, Wang, Alexopoulos, IMS 1993)
• ANN fo WAVE Design
Prasad, IEEE MGL 1993)
Alexopoulos, IMS 1993)
Zaabab, Zhang, Nakhla, IMS 1994)
ip circuits (Watson, Gupta IMS 1996)
, Jenkins, Lee, Calcatera, IMS 1996)
design
(Zaabab, Zhang, Nakhla, T-MTT, 1995)
(Vai, Prasad,

-
-
- ANN for microwave impedance matching (Vai, Prasad, IEEE MGL 1993)
• ANN for microstrip circuit design (Horng, Wang, Alexopoulos, IMS 1993)
• ANN for microwave analysis and optimization (Zaabab, Zhang, Nakhla, IMS 1994)
• • ANN for microwave impedance matching (Vai, Prasad, IEEE MGL 1993)

• ANN for microstrip circuit design (Horng, Wang, Alexopoulos, IMS 1993)

• ANN for microwave analysis and optimization (Zaabab, Zhang, Nakhla, IMS 1994)
-
-
-

Prasad, IEEE MGL 1993)
Alexopoulos, IMS 1993)
Zaabab, Zhang, Nakhla, IMS 1994)
ip circuits (Watson, Gupta IMS 1996)
, Jenkins, Lee, Calcatera, IMS 1996)
design
(Zaabab, Zhang, Nakhla, T-MTT, 1995)
(Vai, Prasad, T-MTT 1995)

-
-

7

Historical Events of ANN for Microwaves

Historic
 of ANN for

• 1st Workshop:

Workshop on Applications of A

IEEE MTT-S IMS (Denver, Colorado), **Historical Events

Of ANN for Microwaves

Workshop:

Workshop on Applications of ANN to Microwave Design

IEEE MTT-S IMS (Denver, Colorado), 1997.

Chairs: K.C. Gupta and M.S. Nakhla; Historical Events

of ANN for Microwaves**

Workshop:

Workshop on Applications of ANN to Microwave Design

IEEE MTT-S IMS (Denver, Colorado), 1997.

Chairs: K.C. Gupta and M.S. Nakhla;

Speakers: L. Mahajan, K.C. Gupta, M **CHAIRS CONTENT METABET AND AN INCRETE AND AN INCRETE MOVER SURVEYOR**
FOR MORKShop:
THERE MTT-S IMS (Denver, Colorado), 1997.
Chairs: K.C. Gupta and M.S. Nakhla;
Speakers: L. Mahajan, K.C. Gupta, M.S. Nakhla, G.L. Creech, Speakers: L. Mahajan, K.C. Gupta, M.S. Nakhla, G.L. Creech, Q.J. Zhang
Speakers: L. Mahajan, K.C. Gupta, M.S. Nakhla, G.L. Creech, Q.J. Zhang
Speakers: L. Mahajan, K.C. Gupta, M.S. Nakhla, G.L. Creech, Q.J. Zhang
Speakers: **Of ANN for Micro**
1st Workshop:
Workshop on Applications of ANN to Mi
1EEE MTT-S IMS (Denver, Colorado), 1997.
Chairs: K.C. Gupta and M.S. Nakhla;
Speakers: L. Mahajan, K.C. Gupta, M.S. Nakh
15 st Short Course:
Applicat Workshop:
Workshop on Applications of ANN to Microwave Design
IEEE MTT-S IMS (Denver, Colorado), 1997.
Chairs: K.C. Gupta and M.S. Nakhla;
Speakers: L. Mahajan, K.C. Gupta, M.S. Nakhla, G.L. Creech, Q.J. Zhang
Speakers: L. Workshop:
Workshop on Applications of ANN to Microwave Design
IEEE MTT-S IMS (Denver, Colorado), 1997.
Chairs: K.C. Gupta and M.S. Nakhla;
Speakers: L. Mahajan, K.C. Gupta, M.S. Nakhla, G.L. Creech, Q.J. Zhang
infort Cours Workshop:
Workshop on Applications of ANN to Microwave Design
IEEE MTT-S IMS (Denver, Colorado), 1997.
Chairs: K.C. Gupta and M.S. Nakhla;
Speakers: L. Mahajan, K.C. Gupta, M.S. Nakhla, G.L. Creech, Q.J. Zhang
Speakers: L.

• 1st Short Course:

Applications of ANN to RF and Microwave Design • **Applications of ANN**

• **Community:** Communist Communist Communist Communist Consider the *Int. J. RF Microwave CAE, 1999*)

• Review of ANN, and filter modeling and classification (Burrascano, Fiori and Mongiardo)

• M • **Applications of ANN**

• **Community of the Synthesis of the Int. J.** RF Microwave CAE, 1999)

• Review of ANN, and filter modeling and classification (Burrascano, Fiori and Mongiardo)

• Synthesis of transmission line st • Applications of ANN

• Complications of ANN

• Complications (Special Issue of the Int. J. RF Microwave CAE, 1999)

• Review of ANN, and filter modeling and classification (Burrascano, Fiori and Mongiardo)

• Synthesis o • Applications of ANN

• to RF and Microwave Design

• (Special Issue of the Int. J. RF Microwave CAE, 1999)

• Review of ANN, and filter modeling and classification (Burrascano, Fiori and Mongiardo)

• Synthesis of transm • **Applications of ANN**

• **Constant Constant Const Example 18 ANN Structures and Microwave Design**

• (Special Issue of the Int. J. RF Microwave CAE, 1999)

• Review of ANN, and filter modeling and classification (Burrascano, Fiori and Mo

• Synthesis of transmission line • Use of the Int. J. RF Microwave Design

• Review of ANN, and filter modeling and classification (Burrascano, Fiori and Mongiardo)

• Synthesis of transmission line structures (Watson, Cho and Gupta)

• Microwave circuit

(Special Issue of the Int. J. RF Microwave CAE, 1999)

- New Social Issue of the Int. J. RF Microwave CAE, 1999)
• Review of ANN, and filter modeling and classification (Burrascano, Fiori and Mongiardo)
• Synthesis of transmission line structures (Watson, Cho and Gupta)
• Micr (Special Issue of the Int. J. RF Microwave CAE, 1999)

• Review of ANN, and filter modeling and classification (Burrascano, Fiori and Mongiardo)

• Synthesis of transmission line structures (Watson, Cho and Gupta)

• Micr • Review of ANN, and filter modeling and classification (Burrascano, Fiori and Mongiardo)
• Synthesis of transmission line structures (Watson, Cho and Gupta)
• Microwave circuit design beyond black box models (Vai and Pras • Review of ANN, and filter modeling and classification (Burrascano, Fiori and Mongiardo)

• Synthesis of transmission line structures (Watson, Cho and Gupta)

• Microwave circuit design beyond black box models (Vai and Pr
-
-
-
-
-
-
-
-
-
-

Simulation vs Design

Simulation vs Design

Lot of help from computers

Computation intensive

CPU time

Based on solid physics laws Kirchhoff's law Maxwell's equation

….

….

Mathematical/numerical formulations partial differential equations linear/nonlinear equations Fourier transforms …..

FEM, FDTD, MOM, TLM, etc linear/nonlinear equation solvers

Partial help from computers

Human intensive

Human time

Use simulation to verify a design solution, How to find a design solution may require human knowledge, experience, learning

Human judgement, intuition, trial-error

Simulation >> "Intelligent Simulation"

Cognition-driven design

Simulation vs Cognition

Based on solid physics laws Kirchhoff's law Maxwell's equation

….

mathematical/numerical formulations partial differential equations linear/nonlinear equations Fourier transforms

…..

FEM, FDTD, MOM, TLM, etc linear/nonlinear equation solvers

….

cause -> response relationships often do not have no mathematical formulas

Learning from examples

Use of prior knowledge

Cognition-Driven Design

Examples of Research Directions in ANN for Microwave Design Examples of Research Directions

in ANN for Microwave Design

• General applications of ANN to microwave design

• Knowledge-based neural networks Examples of Research Directions

in ANN for Microwave Design

• General applications of ANN to microwave design

• Knowledge-based neural networks

• Neural networks for parameterized modeling of EM structure • Examples of Research Directions

in ANN for Microwave Design

• General applications of ANN to microwave design

• Knowledge-based neural networks

• Neural networks for parameterized modeling of EM structures

• Neural • Examples of Research Directions

• in ANN for Microwave Design

• General applications of ANN to microwave design

• Knowledge-based neural networks

• Neural network based models for microwave transistors

• Neural netw in ANN for Microwave Design

• General applications of ANN to microwave design

• Knowledge-based neural networks

• Neural networks for parameterized modeling of EM structures

• Neural network based models for microwave

-
-
-
-
- General applications of ANN to microwave
• Knowledge-based neural networks
• Neural networks for parameterized model
• Neural network based models for microwa
• Neural network based behavioral modelin
• Inverse modeling
 • General applications of ANN to microwave design
• Knowledge-based neural networks
• Neural networks for parameterized modeling of EM structures
• Neural network based models for microwave transistors
• Neural network bas
-
-

Repetitive EM Simulations in Microwave Design

- Need for fast parameterized models

Values of geometrical parameters are repetitively changed during design requiring repetitive evaluations of EM solutions. Repetitive evaluation using standard EM simulations are expensive.

Need parametric models for fast evaluation of EM behavior while geometrical parameters are repetitively changed.

ANN for Parameterized Modeling

ANN for Modeling of Side-Coupled Circular
Waveguide Dual-Mode Filter
(H. Kabir, Y. Wang, Y. Ming, Q.J. Zhang 2010) Waveguide Dual-Mode Filter

(H. Kabir, Y. Wang, Y. Ming, Q.J. Zhang 2010)

Deep Neural Network for Parameter Extraction of Microwave Filters

(J. Jin, C. Zhang, F. Feng, W. Na, J. Ma, and Q.J. Zhang, 2019)

Filter coupling parameters

 $\begin{array}{r} \overbrace{ x_1 } \overbrace{ x_2 } \overbrace{ x_3 } \overbrace{ x_4 } \overbrace{ x_5 } \overbrace{ x_6 } \overbrace{ x_7 } \overbrace{ x_8 } \overbrace{ x_9 } \overbrace{ x_1} \overbrace{ x_2} \overbrace{ x_2} \overbrace{ x_3} \overbrace{ x_2} \overbrace{ x_3} \overbrace{ x_4} \overbrace{ x_2} \overbrace{ x$

 $|S_{11}|$ at 35 frequency points

Knowledge-Based ANN

(F. Wang and Q.J. Zhang, 1997)

- Reduced amount of training data **All Contains the Contract of the Contract of the Contract of Taylor**
- increased extrapolation capability

Combine microwave formulas with ANN Manuted Music Aleuro-SM for Passive Devices (Rayas-Sanchez, Bandler 1999) Mass Call ANN

Neuro-SM for Passive Devices (Rayas-Sanchez, Bandler 1999)

Neuro-SM for Active Devices (L. Zhang and Q. Zhang 2005)

• ANN to map between device coarse models and

training data Neuro-SM for Active Devices (L. Zhang and Q. Zhang 2005)

- ANN to map between device coarse models and training data
- Reduced amount of training data needed

Knowledge-based ANN: Neuro-SM for GaN HEMT Modeling
(Z.H. Zhao, L. Zhang, F, Feng, W. Zhang and Q.J. Zhang, 2020)

(Z.H. Zhao, L. Zhang, F, Feng, W. Zhang and Q.J. Zhang, 2020)

Solution: Train a ANN to map the equivalent circuit model to measurement data of new device. The resulting knowledge-based model accurately represent the new device behavior

z

Knowledge-based Neural Model for Differential Via

(Y.Z. Cao, L. Simonovich, and Q.J. Zhang, 2009)

Equivalent circuit (knowledge) and ANN are combined:

ANN: map the geometrical changes to R, C changes in equivalent circuit Equivalent circuit: provide S-parameters

Knowledge-based Method: Neuro-TF Model

(F. Feng, C. Zhang, V. M. R. Gongal-Reddy, J. G. Ma, Q. J. Zhang 2016)

If empirical model is not available, transfer function (TF) can be used as the knowledge:

Neural network maps the geometrical variables into pole-residue parameters,

Thus allowing the transfer function to respond to changes in geometrical design variables.

. Pole-Tracking for Neuro-TF

(J.N. Zhang, F. Feng, W. Zhang, J. Jin, J.G. Ma and Q. J. Zhang 2020)

Problem: Pole tracking in γ -space while 2 geometrical variables varying (49 samples with d_1 and d_2 varying). Pole p3, p5 are easily separated from other poles.

However, p1, p2 and p4 are mingled and not clearly separatable.

How to separate the 147 poles into 3 groups $p1$, $p2$ and $p4$?, and track the pole movements ?.

81 geometrical samples from DOE – Tracking
81 geometrical variables in the fifth-order waveguide filter.
81 geometrical samples from DOE – harder because they are not grid sample
81 geometrical samples from DOE – harder Neuro-TF with Pole-Tracking

More Challenging Case:

all 9 geometrical variables in the fifth-order waveguide filter.

proposed method using EM sensitivity and MPVL is used to train the Neuro-TF model

Considering that the data used in the figure are test data (never used in training), \rightarrow the proposed method is more accurate than the three existing methods

Neuro-TF Model for Yield Optimization of EM Structures

(J.N. Zhang, J. Jin, W. Zhang, Z.H. Zhao and Q. J. Zhang 2021)

Order of TF: 12 81 DOE samples for training the neuro-TF Number of hidden neurons is 10

Adaptive weighting factors for different frequency points in objective function during optimization.

before after yield opt. yield opt. -10 -10 -20 -20 $\frac{1}{2}$ -30
 $\frac{1}{2}$ -30
-40 $\frac{|\mathbf{S}|}{n}$ -30
-40 -50 -50 -60 Yield = $97%$ -60 Yield = 20% 10.5 11 11.5 10.5 11 11.5 Frequency (GHz) Frequency (GHz)

Monte Carlo analysis with 200 random samples of the filter

3 space mapping iterations

Higher yield solution and faster yield optimization reducing computation time from 72 (Monte-Carlo based) and 12 hours (PC based) down to 5 hours (Neuro-TF).

Neuro-SM for Multiphysics-based Modeling

(W. Zhang, F. Feng, V. Gongal-Reddy, J. Zhang, S. Yan, J. Ma and Q. J. Zhang 2018)

ANN for Multiphysics Optimization of High-Power Filters

5-level DOE with 25 samples for training the space mapped ANN model

CPU time for each Multiphysics simulation is 11.9 min and for each EM simulation is 2.1 min

9-level DOE with 81 EM samples for training ANN model
9-level DOE with 81 EM samples for training ANN model Multi-physics vs pure EM under P=500W. Space the geometrical variables vary during optimization.

> The parallel space mapping with the surrogate ANN model reduced Multiphysics optimization from 59 hours down to 1.7 hours.

AI/ML Based Technologies for Microwaves

Special Issue of the IEEE Trans. MTT (Nov. 2022) Guest Editor: Q.J. Zhang

AI/ML Based Technologies for Microwaves AI/ML Based Technologie
for Microwaves
special Issue of the IEEE Trans. MTT (Nov. 20
Overviews of AI/Machine learning
ANN for microwave computer-aided design (Feng, Na, Jin, J. ZI AI/ML Based Technologies
for Microwaves
special Issue of the IEEE Trans. MTT (Nov. 2022)
riviews of AI/Machine learning
ANN for microwave computer-aided design (Feng, Na, Jin, J. Zhang, W. Zhang, et al.);

Special Issue of the IEEE Trans. MTT (Nov. 2022)

Special Issue of the IEEE Trans. MTT (Nov. 2022)
 Bayesian 6 AI/Machine learning

ANN for microwave computer-aided design (Feng, Na, Jin, J. Zhang, W. Zhang, et al.);

Bayesian learning for uncertainty quantification,)22)
.hang, W. Zhang, et al.);
and inverse modelling
(Swaminathan, et al)
,e filters (Yu, et al) rviews of Al/Machine learning
ANN for microwave computer-aided design (Feng, Na, Jin, J. Zhang, W. Zhang, et al.);
Bayesian learning for uncertainty quantification, optimization and inverse modelling
(Swaminathan, et al)
A

AI/ML Based Technologies
for Microwaves
special Issue of the IEEE Trans. MTT (Nov. 2022)
AI/ML approaches for analysis, forward/inverse modelling and optimizations for
AI/ML technologies for nonlinear device modelling, pow Al/ML Based Tec
for Microwave special Issue of the IEEE Trans
Al/ML approaches for analysis, forward/inverse
microwave design
Al/ML technologies for nonlinear device modelling
modelling and digital predistortion, AI/ML Based Technologies
for Microwaves
special Issue of the IEEE Trans. MTT (Nov. 2022)
AI/ML approaches for analysis, forward/inverse modelling and optimizations for
microwave design
AI/ML technologies for nonlinear devi Al/ML Based Technolo
for Microwaves
special Issue of the IEEE Trans. MTT (Nov
Al/ML approaches for analysis, forward/inverse modellin
microwave design
Al/ML technologies for nonlinear device modelling, power
modelling and AI/ML Based Technologies for Microwaves

Special Issue of the IEEE Trans. MTT (Nov. 2022)

For Microwaves

Special Issue of the IEEE Trans. MTT (Nov. 2022)

AI/ML approaches for analysis, forward/inverse modelling and optimizations for

microwave design

AI/ML technologies for nonlinear device modelling, power a Special Issue of the IEEE Trans. MTT (Nov. 2022)
AI/ML approaches for analysis, forward/inverse modelling and optin
microwave design
AI/ML technologies for nonlinear device modelling, power amplifier (PA)
modelling and dig AI/ML approaches for analysis, forward/inverse modelling and o
microwave design
AI/ML technologies for nonlinear device modelling, power amplifier modelling and digital predistortion,
AI/ML for electromagnetic inverse scat

imaging

Al/ML Based Technol
for Microwaves
special Issue of the IEEE Trans. MTT (N
Machine Learning Methodologies
ANNs AI/ML Based Technologies for Microwaves Al/ML Based Tec
for Microwa
special Issue of the IEEE Trans
nine Learning Methodologies
ANNs
deep learning
convolutional neural networks (CNN)
recurrent neural networks (RNN) Al/ML Based Technologies

for Microwaves

Special Issue of the IEEE Trans. MTT (Nov. 2022)

nine Learning Methodologies

ANNs

deep learning methodologies

ANNs

deep learning support vector machine (

convolutional neural

Special Issue of the IEEE Trans. MTT (Nov. 2022)

ANNs

for Microwaves

Special Issue of the IEEE Trans. MTT (Nov. 2022)

NORT (Nov. 2022)

RANNS

REP (November 2022)

REP (November 2022)

Represent neural

AMPOLOGIES

RIVES

EXTIT (Nov. 2022)

K-means clustering

Repropert vector machine (SVM)

Repropert vector machine (SVM)

Repropert vector machine (SVM) **COMBRICES
SUPPORT (NOV. 2022)
EXTIMBRICAT VECTOR VECTOR VECTOR VECTOR VECTOR VECTOR SUPPORT VECTOR VECTOR VECTOR VECTOR VECTOR VECTOR VECTOR
Support vector machine (SVM)
Caussian process (GP) regression
Bayesian optimizat Cause 19 AVES
EXTENCISES**
EXTENCIST (Nov. 2022)
Reprised the SVM of
Saussian process (GP) regression
Bayesian optimization (BO),
reinforcement learning (RL), **avects:**

MTT (Nov. 2022)

K-means clustering

support vector machine (SVM)

Gaussian process (GP) regression

Bayesian optimization (BO),

reinforcement learning (RL),

U-net etc; reformal.
Friends (Nov. 2022)
K-means clustering
Support vector machine (SVM)
Gaussian process (GP) regression
Bayesian optimization (BO),
reinforcement learning (RL),
U-net etc; WITT (IVOV. 2022)
K-means clustering
Support vector machine (SVM)
Gaussian process (GP) regression
Bayesian optimization (BO),
reinforcement learning (RL),
U-net etc; Special Issue of the IEEE Trans. MTT (Nov. 2022)

nine Learning Methodologies

ANNs

MES External Support vector machine (SVN

convolutional neural networks (CNN)

Convolutional neural networks (CNN)

Convolutional neural Special issue of the IEEE Traffis. With (Nov. 2022)

ine Learning Methodologies

ANNs

deep learning support vector machine (S\

convolutional neural networks (CNN) Gaussian process (GP) regr

recurrent neural networks (RN

Al/ML Based Ted
for Microwave Applications
Microwave Applications
modelling and design: passives - planar a AI/ML Based Technologies for Microwaves

Special Issue of the IEEE Trans. MTT (Nov. 2022)

identification

AI/ML Day in IEEE MTT-S IMS2023 **AI/ML Day in IEEE MTT-S IMS2023**
 Organizers: Q.J. Zhang and Costas Sarris

• AI/ML Bootcamp (Q.J. Zhang, C. Sarris, U. Gustavsson) Bootcamp on Sunday

• AI/ML for RF PA Design and Digital Predistortion (A. Zhu, R. Ma) **AI/ML Day in IEEE MTT-S IMS2023**
 Organizers: Q.J. Zhang and Costas Sarris

• AI/ML Bootcamp (Q.J. Zhang, C. Sarris, U. Gustavsson) Bootcamp on Sunday

• AI/ML for RF PA Design and Digital Predistortion (A. Zhu, R. Ma) **AI/ML Day in IEEE MTT-S IMS2023**
 Organizers: Q.J. Zhang and Costas Sarris

• AI/ML Bootcamp (Q.J. Zhang, C. Sarris, U. Gustavsson) Bootcamp on Sunday

• AI/ML for RF PA Design and Digital Predistortion (A. Zhu, R. Ma) **AI/ML Day in IEEE MTT-S IMS2023**
 Organizers: Q.J. Zhang, C. Sarris, U. Gustavsson) Bootcamp on Sunday

• AI/ML for RF PA Design and Digital Predistortion (A. Zhu, R. Ma) Workshop WMC

• Brain-Inspired Learning for Inte AI/ML Day in IEEE MTT-S IMS2023

Organizers: Q.J. Zhang and Costas Sarris

• AI/ML Bootcamp (Q.J. Zhang, C. Sarris, U. Gustavsson) Bootcamp on Sunday

• AI/ML for RF PA Design and Digital Predistortion (A. Zhu, R. Ma) Work

Organizers: Q.J. Zhang and Costas Sarris

-
-
-
-
-
- EE MTT-S IMS2023

Ehang and Costas Sarris

ng, C. Sarris, U. Gustavsson) Bootcamp on Sunday

Predistortion (A. Zhu, R. Ma) Workshop WMC

nt Spectrum Sensing (L. Katehi), Invited talk

(Q.J. Zhang, C. Sarris), Special Sessi Grid Costas Sarris

• Al/ML Bootcamp (Q.J. Zhang, C. Sarris, U. Gustavsson) Bootcamp on Sunday

• Al/ML for RF PA Design and Digital Predistortion (A. Zhu, R. Ma) Workshop WMC

• Brain-Inspired Learning for Intelligent Spe (Q.J. Zhang, C. Sarris, U. Gustavsson) Bootcamp on Sunday
 Digital Predistortion (A. Zhu, R. Ma) Workshop WMC

Intelligent Spectrum Sensing (L. Katehi), Invited talk

rowaves (Q.J. Zhang, C. Sarris), Special Session Tu1A • Al/ML for RF PA Design and Digital Predistortion (A. Zhu, R. Ma) Workshop WM
• Brain-Inspired Learning for Intelligent Spectrum Sensing (L. Katehi), Invited tal
• Al/ML Technologies for Microwaves (Q.J. Zhang, C. Sarris) distortion (A. Zhu, R. Ma) Workshop WMC
Spectrum Sensing (L. Katehi), Invited talk
(Q.J. Zhang, C. Sarris), Special Session Tu1A
ver Integrity
E. Rayas-Sanchez, C. Sarris), Focus Session Tu3A
and Operation – Hope or Hype ?
-

AI and Machine Learning for **Microwaves**

Machine learning (such as neural networks) exploited in microwave area since 1990s.

Activity in machine learning intensified in recent years

Ongoing Activities and Trends

new algorithms, ML structures, microwave knowledge-based ML methods AT AND IVIACHINE LEATHING TOT

MICTOWAVES

e learning (such as neural networks) exploited in microwave area sinc

in machine learning intensified in recent years

g Activities and Trends

new algorithms, ML structures, mic MICTOWAVES

e learning (such as neural networks) exploited in microwave area since 1990s.

in machine learning intensified in recent years

g Activities and Trends

new algorithms, ML structures, microwave knowledge-based

in machine learning (such as neural networks) exploited in microwave area since 1990s.

in machine learning intensified in recent years

g Activities and Trends

new algorithms, ML structures, microwave knowledge-based ML new and emerging applications

Thank You

35 ¹

ANC 2023 Al and Machine Learning for Microwaves

Past, Present and Future Trends

Qi-jun Zhang

Chancellor's Professor Carleton University Ottawa, Canada

www.doe.carleton.ca/~qjz