

An Overview of Nonlinear Modeling of RF and Microwave Devices

José Carlos Pedro

Institute of Telecommunications – University of Aveiro – Portugal

Aveiro – A touristic town …

Aveiro – … with Unique Architecture (Art Nouveau) …

Aveiro – … with Unique Architecture …

Aveiro – … and wonderful beaches …

Aveiro – … and a vibrant Research University.

An Overview of Nonlinear Modeling of RF and Microwave Devices

José Carlos Pedro

Institute of Telecommunications – University of Aveiro – Portugal

1. Introduction - Nonlinear Microwave CAD – Simulation

- . Nonlinear Device Modeling Theory
- . Physics-Based Modeling of Microwave Devices
- . Behavioral Modeling of Microwave Devices
- . Summary

9

1. Introduction - Nonlinear Microwave CAD – Simulation

- 2. Nonlinear Device Modeling Theory
- 3. Physics-Based Modeling of Microwave Devices
- 4. Behavioral Modeling of Microwave Devices
- 5. Summary

Numerical Simulation of Nonlinear Microwave Circuits There are 3 levels of abstraction of electronic circuits: 1. System-level; 2. Circuit-level and 3. Device-level.

Numerical Simulation of Nonlinear Microwave Circuits There are 3 levels of abstraction of electronic circuits: 1. System-level; 2. Circuit-level and 3. Device-level.

Numerical Simulation of Nonlinear Microwave Circuits There are 3 levels of abstraction of electronic circuits: 1. System-level; 2. Circuit-level and 3. Device-level.

Time-Domain Simulation – Time-Step Integration

Circuit Analysis leads to a *System of Ordinary Differential Equations*, ODEs, than can be recast in the canonical form of a *State-Equation* and an *Output-Equation*:

Time-Domain Model

$$
\frac{d\mathbf{s}(t)}{dt} = \mathbf{f}[\mathbf{s}(t), \mathbf{x}(t)]
$$

and

$$
\mathbf{y}(t) = \mathbf{g} [\mathbf{s}(t), \mathbf{x}(t)]
$$

 $i(t) = f[v(t)]$

Time-Domain Models

Time-domain models (SPICE-Models) are mathematical representations of the conduction current, charge and magnetic fluxes as functions of voltages or currents (**Quasi-Static Assumption**):

 $q(t) = f[v(t)] \rightarrow i(t) = \frac{d q[v(t)]}{dt} = \frac{d q(v)}{dt} \frac{d v(t)}{dt} = C(v) \frac{d v(t)}{dt}$ $\left[v(t)\right]$ \rightarrow $i(t) = \frac{d q[v(t)]}{dt} = \frac{d q(v)}{dv} \frac{d v(t)}{dt} = C(v) \frac{d v(t)}{dt}$ $[v(t)] \quad d \, q(v) \, d \, v(t) \quad \alpha$ $d q(v) d v(t)$ $d v(t)$ \sim $i(t) = f|v(t)| \rightarrow i(t) = \frac{v^2 - v^2}{t} = \frac{v^2 - v^2}{t} = C(v) \frac{v^2 - v^2}{t}$ *dt dv dt* $g(t) = f[i(t)] \rightarrow v(t) = \frac{d \phi[i(t)]}{dt} = \frac{d \phi(i)}{dt} \frac{di(t)}{dt} = L(i) \frac{di(t)}{dt}$ $\begin{pmatrix} i(t) \end{pmatrix}$ \rightarrow $v(t) = \frac{d \phi[i(t)]}{dt} = \frac{d \phi(i)}{di} \frac{di(t)}{dt} = L(i) \frac{di(t)}{dt}$ $\phi[i(t)]$ $d\phi(i)$ $di(t)$ $[i(t)] \quad d \phi(i) d i(t)$ $d \phi(i) d i(t)$ $d \, i(t)$ $\phi(t) = f|i(t)$ $v(t) = f|i(t)| \rightarrow v(t) = \frac{v^2 p(t) v(t)}{t} = \frac{v^2 v(t)}{t} = L(i) \frac{v(t)}{t}$ *dt di dt* Toroidal Núcleo

Modified Nodal Analysis (KCL based) is then used to build more complex models.

ah otutitz

municacões

Frequency-Domain Simulation – Harmonic-Balance

Contrary to time-domain simulators that calculate both the transient and the periodic steady-state, in a time-step by time-step basis,

frequency-domain algorithms can only address the periodic regime, determining the appropriate Fourier components.

Frequency-Domain Models

Frequency-domain models are mathematical representations of the conduction current, charge and magnetic fluxes' Fourier components as functions of their voltages or currents' Fourier components:

Modified Nodal Analysis (KCL based) is again used to build more complex models.

Frequency-Domain Behavioral Modeling of Microwave Devices

Frequency-domain nonlinear models are behavioral models.

Numerical Simulation of Nonlinear Microwave Circuits

Nowadays, nonlinear device models are the bottleneck of microwave circuit/system simulation accuracy.

1. Introduction - Nonlinear Microwave CAD – Simulation

2. Nonlinear Device Modeling Theory

- 3. Physics-Based Modeling of Microwave Devices
- 4. Behavioral Modeling of Microwave Devices
- 5. Summary

2 – Nonlinear Device Modeling Theory Physical Modeling vs. Behavioral Modeling $\vec{\nabla} \cdot \vec{D} = \rho$ $\nabla \cdot B = 0$ $a_0(t)$ $a_{z}(t)$ ∂D $H(\omega)$ ∂B $\vec{\nabla} \times \vec{H} = \vec{J} +$ ∇ x $E = \partial t$ ∂t

Physics-Based Model **Behavioral Model** Behavioral Model

Physics-Based Models can be deduced from the **internal structure** of the device and its **physical governing rules**.

- \rightarrow Are necessarily approximate.
- \rightarrow (Ideally) do not need any measurement data.
- \rightarrow Poor representation capabilities but good predictive behavior.

2 – Nonlinear Device Modeling Theory

Physical Modeling vs. Behavioral Modeling On the other hand,

$$
\vec{\nabla} \cdot \vec{D} = \rho \qquad \qquad \vec{\nabla} \cdot \vec{B} = 0
$$

$$
\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \qquad \vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}
$$

Physics-Based Model **Behavioral Model** Behavioral Model

Behavioral Models are Empirical in nature

- **→ Rely on input-output (Behavioral) observations,**
- \rightarrow Need to compensate the lack of knowledge of device constitution (**Black-Box Models**) with measured data,
- → Best in representing measured data "The device knows best !"
- \rightarrow No predictive capability.

The Canonical Wiener Model

(Interpolated) Look-Up-Tables, Polynomials or ANNs (AI ?!?) are all special cases of a general formulation known as the Canonical Wiener Model (for feed-forward structures):

Physical Modeling vs. Behavioral Modeling

Equivalent Circuit Models can be seen as Behavioral Models using apriori Physics-Based Knowledge of the topology:

The best of the Two Worlds !

1. Introduction - Nonlinear Microwave CAD – Simulation

2. Nonlinear Device Modeling Theory

3. Physics-Based Modeling of Microwave Devices

- 4. Behavioral Modeling of Microwave Devices
- 5. Summary

Instituto de 3 - Physics-Based Modeling of μ Wave Devices^M universidade

Drift-Diffusion Model and its Variables

Physics-based models describe the device at its fundamental level using **Gauss's Law**,

$$
\nabla.E = \frac{\rho}{\epsilon} \qquad \qquad \nabla^2 \psi - \frac{q}{\epsilon} \left[N_d^+ - n \right]
$$

… **Transport and Charge Conservation Laws**:

 $J = -q. n. \mu(E) \nabla \psi + D_n \nabla n$ *drift diffusion* $\nabla \cdot J = q$ ∂n ∂t

2-D TCAD model is too complex to be useful for equivalent-circuit model extraction. So, a much simpler 1-D model was developed:

$$
n_{s_i} = \frac{\epsilon}{q} \cdot V_{ST} \ln \left[1 + e^{\left(h \frac{\boldsymbol{\psi}_{i+1} + \boldsymbol{\psi}_{i-1} - 2\boldsymbol{\psi}_i + v_G - V_T - \boldsymbol{\psi}_i}{d_{AIGaN}} \right) / V_{ST}} \right] \quad i_{DS} = -qW n_s v \left(\frac{\boldsymbol{\psi}_{i+1} - \boldsymbol{\psi}_{i-1}}{2\delta x} \right)
$$
\nand\n
$$
v_S \bullet \left\{ \begin{array}{c} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \frac{\mathbf{0} & \mathbf{0} & \mathbf
$$

Actually, this 1-D model allowed to separate GaN HEMT "intrinsic" characteristics from the access regions we were willing to study.

Actually, this 1-D model allowed to separate GaN HEMT "intrinsic" characteristics from the access regions we were willing to study.

28 José C. Pedro, An Overview of Nonlinear Modeling of RF and Microwave Devices – LAMC-2023

Actually, this 1-D model allowed to separate GaN HEMT "intrinsic" characteristics from the access regions we were willing to study.

3 – Physics-Based Modeling of m**Wave Devices**

2-D TCAD Model for Studying Trapping Effects

The full 2-D TCAD model has been used to study the origins of non-quasistatic behavior due to buffer current and trapping effects:

Without buffer traps, an AlGaN/GaN HEMT could not cutoff.

105tituto de 23 - Physics-Based Modeling of μ **Wave Devices** \blacktriangleright universidade

2-D TCAD Model for Studying Trapping Effects

These were known for a long time as trap-induced memory effects of PAs or transistor self-biasing:

105tituto de 2 - Physics-Based Modeling of μ **Wave Devices** \blacktriangleright

2-D TCAD Model for Studying Trapping Effects

These were known for a long time as trap-induced memory effects of PAs or transistor self-biasing:

105tituto de 23 - Physics-Based Modeling of μ **Wave Devices¹**

2-D TCAD Model for Studying Trapping Effects

The inclusion of trapping in our 1-D model allowed us to propose the desired physically inspired equivalent circuit-model of a AlGaN/GaN HEMT for trapping effects ...

2-D TCAD Model for Studying Trapping Effects

and thus predict trap-induced memory effects of a PA under real modulated signals:

1. Introduction - Nonlinear Microwave CAD – Simulation

- 2. Nonlinear Device Modeling Theory
- 3. Physics-Based Modeling of Microwave Devices

4. Behavioral Modeling of Microwave Devices

5. Summary

Institute de **4 - Behavioral Modeling of µWave Devices** \mathbb{M} universidade

A Neural Network F-D Behavioral Model for PA Design

Having no equivalent-circuit model for large packaged devices, we implemented an ANN model capable of representing the load-pull, AM/AM and AM/PM and I_{dc} of a GaN HEMT, the essential device information for PA design.

4 – Behavioral Modeling of µWave Devices universidade
de aveiro

A Neural Network F-D Behavioral Model for PA Design

The obtained fit to the measured load-pull with the proposed LPM is remarkably good:

4 – Behavioral Modeling of µWave Devices

universidade
de aveiro

A Neural Network F-D Behavioral Model for PA Design

4 – Behavioral Modeling of m**Wave Devices** universidade

A Neural Network F-D Behavioral Model for PA Design

F-D ANN model was used for designing the Balanced PAs of a SMLBA via nonlinear optimization:

4 – Behavioral Modeling of µWave Devices Numericações 4 – Behavioral Modeling of µWave Devices universidade
de aveiro

A Neural Network F-D Behavioral Model for PA Design

Efficiency and Gain versus Output Power simulation results across 40% relative bandwidth:

40 José C. Pedro, An Overview of Nonlinear Modeling of RF and Microwave Devices – LAMC-2023

1. Introduction - Nonlinear Microwave CAD – Simulation

- 2. Nonlinear Device Modeling Theory
- 3. Physics-Based Modeling of Microwave Devices
- 4. Behavioral Modeling of Microwave Devices

5. Summary

- **1** Nowadays, most RF/microwave designs rely on computer simulators, for which accurate nonlinear models are needed.
- **2** For most usual cases, the bottleneck of microwave nonlinear simulators' accuracy is in their device models.
- **3** There are time-domain and frequency-domain models as well as physics-based, measurement-based, or equivalent-circuit models.
- **4** Equivalent circuit-models have been the standard for circuit simulation, but TCAD models and much simpler behavioral models are also playing a role in nonlinear microwave simulation.